Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Heart Circ Physiol ; 326(5): H1180-H1192, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38457352

RESUMO

Endothelial cells (ECs) within the vascular system encounter fluid shear stress (FSS). High, laminar FSS promotes vasodilation and anti-inflammatory responses, whereas low or disturbed FSS induces dysfunction and inflammation. However, the adaptation of endothelial cells (ECs) to dynamically changing FSS patterns remains underexplored. Here, by combining traction force microscopy with a custom flow chamber, we examined human umbilical vein endothelial cells adapting their traction during transitions from short-term low shear to long-term high shear stress. We discovered that the initial low FSS elevates the traction by only half of the amount in response to direct high FSS even after flow changes to high FSS. However, in the long term under high FSS, the flow started with low FSS triggers a substantial second rise in traction for over 10 h. In contrast, the flow started directly with high FSS results in a quick traction surge followed by a huge reduction below the baseline traction in <30 min. Importantly, we find that the orientation of traction vectors is steered by initial shear exposure. Using Granger causality analysis, we show that the traction that aligns in the flow direction under direct high FSS functionally causes cell alignment toward the flow direction. However, EC traction that orients perpendicular to the flow that starts with temporary low FSS functionally causes cell orientation perpendicular to the flow. Taken together, our findings elucidate the significant influence of initial short-term low FSS on lasting changes in endothelial traction that induces EC alignment.NEW & NOTEWORTHY In our study, we uncover that preconditioning with low shear stress yields enduring impacts on endothelial cell traction and orientation, persisting even after transitioning to high-shear conditions. Using Granger causality analysis, we demonstrate a functional link between the direction of cell traction and subsequent cellular alignment across varying shear environments.


Assuntos
Células Endoteliais da Veia Umbilical Humana , Estresse Mecânico , Humanos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Cultivadas , Mecanotransdução Celular , Fatores de Tempo , Adesão Celular
2.
Am J Respir Cell Mol Biol ; 70(4): 308-321, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38271699

RESUMO

Alveolar septation increases gas-exchange surface area and requires coordinated cytoskeletal rearrangement in lung fibroblasts (LFs) to balance the demands of contraction and cell migration. We hypothesized that DBN (drebrin), a modulator of the actin cytoskeleton in neuronal dendrites, regulates the remodeling of the LF cytoskeleton. Using mice bearing a transgelin-Cre-targeted deletion of Dbn in pulmonary fibroblasts and pericytes, we examined alterations in alveolar septal outgrowth, LF spreading and migration, and actomyosin function. The alveolar surface area and number of alveoli were reduced, whereas alveolar ducts were enlarged, in mice bearing the dbn deletion (DBNΔ) compared with their littermates bearing only one dbn-Flox allele (control). Cultured DBNΔ LFs were deficient in their responses to substrate rigidity and migrated more slowly. Drebrin was abundant in the actin cortex and lamella, and the actin fiber orientation was less uniform in lamella of DBNΔ LFs, which limited the development of traction forces and altered focal adhesion dynamics. Actin fiber orientation is regulated by contractile NM2 (nonmuscle myosin-2) motors, which help arrange actin stress fibers into thick ventral actin stress fibers. Using fluorescence anisotropy, we observed regional intracellular differences in myosin regulatory light chain phosphorylation in control LFs that were altered by dbn deletion. Using perturbations to induce and then release stalling of NM2 on actin in LFs from both genotypes, we made predictions explaining how DBN interacts with actin and NM2. These studies provide new insight for diseases such as emphysema and pulmonary fibrosis, in which fibroblasts inappropriately respond to mechanical cues in their environment.


Assuntos
Actinas , Neuropeptídeos , Camundongos , Animais , Actinas/metabolismo , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Pulmão/metabolismo , Citoesqueleto de Actina/metabolismo , Cadeias Leves de Miosina/metabolismo
3.
bioRxiv ; 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37790318

RESUMO

Within the vascular system, endothelial cells (ECs) are exposed to fluid shear stress (FSS), a mechanical force exerted by blood flow that is critical for regulating cellular tension and maintaining vascular homeostasis. The way ECs react to FSS varies significantly; while high, laminar FSS supports vasodilation and suppresses inflammation, low or disturbed FSS can lead to endothelial dysfunction and increase the risk of cardiovascular diseases. Yet, the adaptation of ECs to dynamically varying FSS remains poorly understood. This study focuses on the dynamic responses of ECs to brief periods of low FSS, examining its impact on endothelial traction-a measure of cellular tension that plays a crucial role in how endothelial cells respond to mechanical stimuli. By integrating traction force microscopy (TFM) with a custom-built flow chamber, we analyzed how human umbilical vein endothelial cells (HUVECs) adjust their traction in response to shifts from low to high shear stress. We discovered that initial exposure to low FSS prompts a marked increase in traction force, which continues to rise over 10 hours before slowly decreasing. In contrast, immediate exposure to high FSS causes a quick spike in traction followed by a swift reduction, revealing distinct patterns of traction behavior under different shear conditions. Importantly, the direction of traction forces and the resulting cellular alignment under these conditions indicate that the initial shear experience dictates long-term endothelial behavior. Our findings shed light on the critical influence of short-lived low-shear stress experiences in shaping endothelial function, indicating that early exposure to low FSS results in enduring changes in endothelial contractility and alignment, with significant consequences for vascular health and the development of cardiovascular diseases.

4.
Methods Mol Biol ; 2375: 229-245, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34591312

RESUMO

Micropillar arrays are one of the tools that quantify the mechanical forces exerted by endothelial cells and any other adherent cell types. This chapter describes the fabrication and usage of the micropillars that reports spatial distribution of traction forces by endothelial cells. The fabrication begins with making a "master" pillar substrate using photolithography, followed by softlithography of the master with polydimethylsiloxane. The pillars can then be printed with an extracellular matrix protein in specific shape using stamp-off technique. Lastly, imaging of the micropillars with cells and the analysis of the traction force using Matlab-based software are described.


Assuntos
Células Endoteliais , Adesão Celular , Fenômenos Mecânicos , Silicones
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...